Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 18089, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302793

RESUMO

Paramecium bursaria is a mixotrophic ciliate species, which is common in stagnant and slow-flowing, nutrient-rich waters. It is usually found living in symbiosis with zoochlorellae (green algae) of the genera Chlorella or Micractinium. We investigated P. bursaria isolates from around the world, some of which have already been extensively studied in various laboratories, but whose morphological and genetic identity has not yet been completely clarified. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed five highly supported lineages, which corresponded to the syngen and most likely to the biological species assignment. These syngens R1-R5 could also be distinguished by unique synapomorphies in the secondary structures of the SSU and the ITS. Considering these synapomorphies, we could clearly assign the existing GenBank entries of P. bursaria to specific syngens. In addition, we discovered synapomorphies at amino acids of the COI gene for the identification of the syngens. Using the metadata of these entries, most syngens showed a worldwide distribution, however, the syngens R1 and R5 were only found in Europe. From morphology, the syngens did not show any significant deviations. The investigated strains had either Chlorella variabilis, Chlorella vulgaris or Micractinium conductrix as endosymbionts.


Assuntos
Alveolados , Chlorella vulgaris , Clorófitas , Cilióforos , Oligoimenóforos , Paramecium , Paramecium/genética , Filogenia , Clorófitas/genética , Simbiose/genética
3.
Microorganisms ; 9(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800927

RESUMO

Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October-April; May-September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium Planktothrix rubescens and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties.

4.
Sci Rep ; 11(1): 5916, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723272

RESUMO

Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of different Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one-year cycle both from morphospecies counts and high-throughput sequencing (HTS), and, (v) proof of the co-occurrence of Coleps and their endosymbiotic algae from HTS-based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in different depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the different lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae). Our results suggest a future revision of the species concept of the genus Coleps.


Assuntos
Cilióforos/classificação , Cilióforos/genética , Água/parasitologia , Biodiversidade , Variação Biológica da População , Cilióforos/citologia , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Ecologia , Ecossistema , Lagos , Conformação de Ácido Nucleico , Fenótipo , Filogenia , Estações do Ano , Simbiose
5.
Front Microbiol ; 12: 787290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185817

RESUMO

Species of the ciliate genus Urotricha are key players in freshwater plankton communities. In the pelagial of lakes, about 20 urotrich species occur throughout an annual cycle, some of which play a pivotal role in aquatic food webs. For example, during the phytoplankton spring bloom, they consume a remarkable proportion of the algal production. In ecological studies, urotrich ciliates are usually merely identified to genus rank and grouped into size classes. This is unsatisfying considering the distinct autecological properties of individual species and their specific spatial and temporal distribution patterns. As a basis for future research, we characterized in detail four common urotrich morphotypes, i.e., specimens identified as U. furcata and tentatively as U. agilis, U. pseudofurcata, and U. castalia, using state-of-the-art methods. We used an integrative polyphasic approach, in which morphological studies (in vivo observation, silver staining methods, scanning electron microscopy) were linked with a molecular approach exploiting four different gene fragments as taxonomic DNA barcodes with different resolution potential (SSU rDNA, ITS-1, ITS-2, hypervariable V4 and V9 regions of the SSU rDNA). We shed light on the diversity of urotrich ciliates as well as on their global distribution patterns, and annual cycles. Additionally, we coupled individual species occurrences and environmental parameters, and subsequently modeled the distribution and occurrence, using logistic regressions. Furthermore, for one strain putatively identified as U. castalia, we ascertained the optimal cultivation media and food preferences. Thereby, our comprehensive view on these important freshwater ciliates that frequently occur in environmental high throughput sequencing datasets worldwide will allow future studies to better exploit protistan plankton data from lakes.

6.
Mol Ecol ; 30(4): 1053-1071, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33306859

RESUMO

Microbial planktonic communities are the basis of food webs in aquatic ecosystems since they contribute substantially to primary production and nutrient recycling. Network analyses of DNA metabarcoding data sets emerged as a powerful tool to untangle the complex ecological relationships among the key players in food webs. In this study, we evaluated co-occurrence networks constructed from time-series metabarcoding data sets (12 months, biweekly sampling) of protistan plankton communities in surface layers (epilimnion) and bottom waters (hypolimnion) of two temperate deep lakes, Lake Mondsee (Austria) and Lake Zurich (Switzerland). Lake Zurich plankton communities were less tightly connected, more fragmented and had a higher susceptibility to a species extinction scenario compared to Lake Mondsee communities. We interpret these results as a lower robustness of Lake Zurich protistan plankton to environmental stressors, especially stressors resulting from climate change. In all networks, the phylum Ciliophora contributed the highest number of nodes, among them several in key positions of the networks. Associations in ciliate-specific subnetworks resembled autecological species-specific traits that indicate adaptions to specific environmental conditions. We demonstrate the strength of co-occurrence network analyses to deepen our understanding of plankton community dynamics in lakes and indicate biotic relationships, which resulted in new hypotheses that may guide future research in climate-stressed ecosystems.


Assuntos
Cadeia Alimentar , Lagos , Áustria , Ecossistema , Plâncton/genética , Suíça
7.
Front Microbiol ; 10: 248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837972

RESUMO

Ciliates represent central nodes in freshwater planktonic food webs, and many species show pronounced seasonality, with short-lived maxima of a few dominant taxa while many being rare or ephemeral. These observations are primarily based on morphospecies counting methods, which, however, have limitations concerning the amount and volume of samples that can be processed. For high sampling frequencies at large scales, high throughput sequencing (HTS) of freshwater ciliates seems to be a promising tool. However, several studies reported large discrepancy between species abundance determinations by molecular compared to morphological means. Therefore, we compared ciliate DNA metabarcodes (V9 regions of the 18S rRNA gene) with morphospecies counts for a 3-year study (Lake Zurich, Switzerland; biweekly sampling, n = 74). In addition, we isolated, cultivated and sequenced the 18S rRNA gene of twelve selected ciliate species that served as seeds for HTS analyses. This workflow allowed for a detailed comparison of V9 data with microscopic analyses by quantitative protargol staining (QPS). The dynamics of V9 read abundances over the seasonal cycle corroborated well with morphospecies population patterns. Annual successions of rare and ephemeral species were more adequately characterized by V9 reads than by QPS. However, numbers of species specific sequence reads only partly reflected rank orders seen by counts. In contrast, biomass-based assemblage compositions showed higher similarity to V9 read numbers, probably indicating a relation between cell sizes and numbers / sizes of macronuclei (or 18S rRNA operons). Full-length 18S rRNA sequences of ciliates assigned to certain morphospecies are urgently needed for barcoding approaches as planktonic taxa are still poorly represented in public databases and the interpretation of HTS data depends on profound reference sequences. Through linking operational taxonomic units (OTUs) with known morphospecies, we can use the deep knowledge about the autecology of these species.

8.
J Eukaryot Microbiol ; 65(2): 250-254, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28833929

RESUMO

Paramecium populations from a clear and a glacier-fed turbid alpine lake were exposed to solar simulated ultraviolet (UVR) and photosynthetically active radiation (PAR) at 8 and 15 °C. The ciliates were tested for DNA damage (comet assay), behavioral changes, and mortality after UVR + PAR exposure. High DNA damage levels (~58% tail DNA) and abnormal swimming behavior were observed, although no significant changes in cell numbers were found irrespective of the lake origin (clear, turbid), and temperatures. We conclude that environmental stressors such as UVR and their effects may influence the adaptation of ciliates living in alpine lakes.


Assuntos
Dano ao DNA , Paramecium/efeitos da radiação , Raios Ultravioleta , Lagos/parasitologia , Paramecium/crescimento & desenvolvimento , Fotossíntese/efeitos da radiação , Temperatura
9.
Inland Waters ; 7(1): 55-64, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28690781

RESUMO

Ciliates in shallow alpine lakes are exposed to high levels of incident solar ultraviolet radiation (UVR). We observed the presence of specific sunscreen compounds, the mycosporine-like amino acids (MAAs), in several populations of Bursaridium, a relatively large ciliate species found in such lakes. The populations from 3 highly UV transparent lakes revealed the presence of 7 MAAs (MG, SH, PR, PI, AS, US, and PE) in total concentrations of 3.6-52.4 10-5 µg µg-1 dry weight (DW) per individual, whereas in one glacially turbid and less UV transparent lake, no MAAs were detected in the Bursaridium population. The MAAs in the ciliates generally reflected the composition and relative amounts of the lakes' seston MAAs, assuming that the ciliates fed on MAA-rich plankton. We experimentally found that naturally acquired MAAs prevented ciliate mortality under simulated UVR and photosynthetically active radiation (PAR) conditions. We further tested the dietary regulation of the MAAs-content in the ciliates under artificial UVR and PAR exposure and found an increase in MAAs concentrations in all treatments. Our assumption was that several stress factors other than irradiation were involved in the synthesis or up-regulation of MAAs.

10.
Pac Sci ; 71: 29-44, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208983

RESUMO

In this study we present a first limnological characterization of Lake Billy Mitchell [1,013 m above sea level (a.s.l.), 88.3 m depth, 3 km2 surface area] in central Bougainville Island, Papua New Guinea. Physicochemical depth profiles indicated mixis of the entire water body with oxygen saturation reaching 55% in the deepest layers. A shallow thermocline was eroded at night, indicating atelomixis. HCO 3 - , Cl - , SO 4 2 - and Na+, Ca2+, Mg2+ were the dominant anions and cations, respectively, leading to a conductivity of around 1,230 µS cm-1. The pH was close to neutral throughout the water column, and no accumulation of CO2 was observed at greater depths. With a total phosphorus concentration of around 25 µg liter-1 the lake can be considered as meso-to eutrophic. The phytoplankton community consisted of 18 taxa. The dinophyte Peridiniopsis cf. penardii and the filamentous green alga Planctonema lauterbornii dominated in the uppermost layer and reached a total biovolume around 16 mm3 liter-1. Six macrophyte taxa were found (three Spermatophyta/three Bryophyta), with the water chestnut Eleocharis dulcis covering the shoreline and Ceratophyllum demersum spreading to at least 3 m depth. Seven ciliate species were detected (<5 individuals ml-1) with bacterivorous scuticociliates and the prostomatid Coleps hirtus hirtus dominating the assemblage. The micrometazoan plankton community comprised the rotifer Anuraeopsis fissa, the copepod Mesocyclops cf. affinis, and a cladoceran species with-in the Ceriodaphnia cornuta group all concentrating in the upper water column. The only fish species found in the lake was the eel Anguilla megastoma, whereas in the effluent river this species occurred together with Anguilla marmorata.

11.
Freshw Biol ; 61(11): 1950-1965, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27840457

RESUMO

Climate warming is accelerating the retreat of glaciers and recently, many 'new' glacial turbid lakes have been created. In the course of time, the loss of the hydrological connectivity to a glacier causes, however, changes in their water turbidity and turns these ecosystems into clear ones.To understand potential differences in the food-web structure between glacier-fed turbid and clear alpine lakes, we sampled ciliates, phyto-, bacterio- and zooplankton in one clear and one glacial turbid alpine lake, and measured key physicochemical parameters. In particular, we focused on the ciliate community and the potential drivers for their abundance distribution.In both lakes, the zooplankton community was similar and dominated by the copepod Cyclops abyssorum tatricus and rotifers including Polyarthra dolichoptera, Keratella hiemalis, Keratella cochlearis and Notholca squamula. The phytoplankton community structure differed and it was dominated by the planktonic diatom Fragilaria tenera and the cryptophyte alga Plagioselmis nannoplanctica in the glacial turbid lake, while chrysophytes and dinoflagellates were predominant in the clear one.Ciliate abundance and richness were higher in the glacial turbid lake (∼4000-27 800 Ind L-1, up to 29 species) than in the clear lake (∼570-7150 Ind L-1, up to eight species). The dominant species were Balanion planctonicum, Askenasia cf. chlorelligera, Urotricha cf. furcata and Mesodinium cf. acarus. The same species dominated in both lakes, except for Mesodinium cf. acarus and some particle-associated ciliates, which occurred exclusively in the glacial turbid lake. The relative underwater solar irradiance (i.e. percentage of PAR and UVR at depth) significantly explained their abundance distribution pattern, especially in the clear water lake. In the glacial turbid lake, the abundance of the dominating ciliate taxa was mainly explained by the presence of predatory zooplankton.Our results revealed an unexpected high abundance and richness of protists (algae, ciliates) in the glacial turbid lake. This type of lake likely offers more suitable environmental conditions and resource niches for protists than the clear and highly UV transparent lake.

12.
Eur J Protistol ; 55(Pt A): 39-49, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27365178

RESUMO

We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics.


Assuntos
Eucariotos/fisiologia , Estresse Fisiológico/fisiologia , Congressos como Assunto , Eucariotos/efeitos dos fármacos , Eucariotos/efeitos da radiação , Nanoestruturas/toxicidade , Pesquisa , Raios Ultravioleta
13.
FEMS Microbiol Ecol ; 91(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25764458

RESUMO

We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs 97%, operational taxonomic units), Stramenopiles (34.0% OTUs 97%), Cryptophyta (4.0% OTUs 97%), Chloroplastida (3.6% OTUs 97%) and Fungi (1.7% OTUs 97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs 97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes.


Assuntos
Alveolados/classificação , Criptófitas/classificação , Fungos/classificação , Plâncton/classificação , Estramenópilas/classificação , Alveolados/genética , Áustria , Sequência de Bases , Biodiversidade , Criptófitas/genética , Ecologia , Ecossistema , Fungos/genética , Variação Genética/genética , Lagos , Nepal , Filogenia , Plâncton/genética , Análise de Sequência de DNA , Estramenópilas/genética
14.
Environ Microbiol ; 16(2): 430-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23848238

RESUMO

Analyses of high-throughput environmental sequencing data have become the 'gold-standard' to address fundamental questions of microbial diversity, ecology and biogeography. Findings that emerged from sequencing are, e.g. the discovery of the extensive 'rare microbial biosphere' and its potential function as a seed-bank. Even though applied since several years, results from high-throughput environmental sequencing have hardly been validated. We assessed how well pyrosequenced amplicons [the hypervariable eukaryotic V4 region of the small subunit ribosomal RNA (SSU rRNA) gene] reflected morphotype ciliate plankton. Moreover, we assessed if amplicon sequencing had the potential to detect the annual ciliate plankton stock. In both cases, we identified significant quantitative and qualitative differences. Our study makes evident that taxon abundance distributions inferred from amplicon data are highly biased and do not mirror actual morphotype abundances at all. Potential reasons included cell losses after fixation, cryptic morphotypes, resting stages, insufficient sequence data availability of morphologically described species and the unsatisfying resolution of the V4 SSU rRNA fragment for accurate taxonomic assignments. The latter two underline the necessity of barcoding initiatives for eukaryotic microbes to better and fully exploit environmental amplicon data sets, which then will also allow studying the potential of seed-bank taxa as a buffer for environmental changes.


Assuntos
Cilióforos/genética , Código de Barras de DNA Taxonômico , Genes de RNAr , Lagos/microbiologia , Áustria , Clorofila/análise , Clorofila A , Cilióforos/classificação , Cilióforos/citologia , DNA de Protozoário/genética , Plâncton/classificação , Plâncton/citologia , Plâncton/genética , RNA Ribossômico 18S/genética , Microbiologia da Água
15.
J Plankton Res ; 33(3): 535-540, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21984852

RESUMO

The recurrent depth preference of three ciliate species (two prostomatids and one haptorid) in a transparent alpine lake indicates the existence of niche partitioning among them involving potential factors such as avoidance of high ultraviolet radiation levels and zooplankton predation, as well as competition for food resources.

16.
J Eukaryot Microbiol ; 58(3): 196-202, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21414057

RESUMO

We tested whether mixotrophic ciliates are more resistant to solar ultraviolet radiation (UVR) than heterotrophic ones because symbiotic algae can provide self-shading by cell matter absorption and eventually by direct UV screening from mycosporine-like amino acids (MAAs). Sensitivity of a natural assemblage to solar radiation was tested in experiments in the original lake and in a more UV transparent alpine lake after transplantation of the ciliates. In both lakes, the assemblage was exposed either to full sunlight, to photosynthetically active radiation only, or kept in the dark. In each lake, exposure was for 5 h at the surface and at the depth corresponding to the 10% attenuation depth at 320 nm. Overall, when the assemblage was exposed to surface UVR, only one out of four dominant mixotrophic ciliates, Vorticella chlorellata, was more resistant than heterotrophic species. The higher UV resistance in V. chlorellata was related to the presence of MAAs and the high percentage of ciliate volume occupied by algal symbionts. Our results indicate that effects of UVR were species-specific and depended on efficient screening of these wavelengths, but also on the depth preference of the ciliates and thus, on their previous exposure history to UVR.


Assuntos
Cilióforos/efeitos da radiação , Água Doce/parasitologia , Raios Ultravioleta , Aminoácidos/isolamento & purificação , Sobrevivência Celular/efeitos da radiação , Cilióforos/química , Cilióforos/microbiologia , Simbiose
17.
Protist ; 160(2): 233-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19195930

RESUMO

We assessed the photoprotective role of symbiotic Chlorella in the ciliate Paramecium bursaria by comparing their sensitivity to UV radiation (UVR) with Chlorella-reduced and Chlorella-free (aposymbiotic) cell lines of the same species. Aposymbiotic P. bursaria had significantly higher mortality than the symbiotic cell lines when exposed to UVR. To elucidate the protection mechanism, we assessed the algal distribution within the ciliate using thin-sections and transmission electron microscopy and estimated the screening factor by Chlorella based on an optical model. These analyses evidenced a substantial screening factor ranging, from 59.2% to 93.2% (320nm) for regular algal distribution. This screening efficiency reached up to approximately 100% when Chlorella algae were dislocated to the posterior region of the ciliate. The dislocation was observed in symbiotic ciliates only under exposure to UV plus photosynthetically active radiation (PAR) or to high PAR levels. Moreover, under exposure to UVB radiation and high PAR, symbiotic P. bursaria aggregated into dense spots. This behavior could represent an efficient avoidance strategy not yet described for ciliates. Analyses of the intact symbiosis and their algal symbionts for UV-screening compounds (mycosporine-like amino acids and sporopollenin) proved negative. Overall, our results show that photoprotection in this ciliate symbiosis represents an additional advantage to the hitherto postulated nutritional benefits.


Assuntos
Chlorella/fisiologia , Paramecium/fisiologia , Paramecium/efeitos da radiação , Simbiose , Animais , Chlorella/ultraestrutura , Microscopia Eletrônica de Transmissão , Paramecium/ultraestrutura , Raios Ultravioleta
18.
J Phycol ; 44(1): 77-84, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27041043

RESUMO

The nature of Chlorella symbioses in invertebrates and protists has attracted much interest, but the uncertain taxonomy of the algal partner has constrained a deeper ecological understanding of this symbiosis. We sequenced parts of the nuclear 18S rDNA, the internal transcribed spacer (ITS)-1 region, and the chloroplast 16S rDNA of several Chlorella isolated from pelagic ciliate species of different lakes, Paramecium bursaria symbionts, and free-living Chlorella to elucidate phylogenetic relationships of Chlorella-like algae and to assess their host specificity. Sequence analyses resulted in well-resolved phylogenetic trees providing strong statistical support for a homogenous 'zoochlorellae' group of different ciliate species from one lake, but clearly different Chlorella in one of those ciliate species occurring in another lake. The two Chlorella strains isolated from the same ciliate species, but from lakes having a 10-fold difference in underwater UV transparency, also presented a distinct physiological trait, such as the ability to synthesize UV-absorbing substances known as mycosporine-like amino acids (MAAs). Algal symbionts of all P. bursaria strains of different origin resolved in one clade apart from the other ciliate symbionts but split into two distinct lineages, suggesting the existence of a biogeographic pattern. Overall, our results suggest a high degree of species specificity but also hint at the importance of physiological adaptation in symbiotic Chlorella.

19.
Environ Microbiol ; 9(8): 2117-22, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17635555

RESUMO

The ciliate Paramecium bursaria living in mutualistic relationship with the unicellular green alga Chlorella is known to be easily infected by various potential symbionts/parasites such as bacteria, yeasts and other algae. Permanent symbiosis, however, seems to be restricted to Chlorella taxa. To test the specificity of this association, we designed infection experiments with two aposymbiotic P. bursaria strains and Chlorella symbionts isolated from four Paramecium strains, seven other ciliate hosts and two Hydra strains, as well as three free-living Chlorella species. Paramecium bursaria established stable symbioses with all tested Chlorella symbionts of ciliates, but never with symbiotic Chlorella of Hydra viridissima or with free-living Chlorella. Furthermore, we tested the infection specificity of P. bursaria with a 1:1:1 mixture of three compatible Chlorella strains, including the native symbiont, and then identified the strain of the newly established symbiosis by sequencing the internal transcribed spacer region 1 of the 18S rRNA gene. The results indicated that P. bursaria established symbiosis with its native symbiont. We conclude that despite clear preferences for their native Chlorella, the host-symbiont relationship in P. bursaria is flexible.


Assuntos
Chlorella/fisiologia , Paramecium/microbiologia , Paramecium/fisiologia , Animais , Chlorella/genética , DNA de Algas/genética , DNA Espaçador Ribossômico/genética , Paramecium/genética , RNA Ribossômico 18S/genética , Simbiose
20.
FEMS Microbiol Ecol ; 60(1): 40-50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17250752

RESUMO

We simultaneously studied the impact of top-down (protistan grazing) and bottom-up (phosphorus availability) factors on the numbers and biomasses of bacteria from various phylogenetic lineages, and on their growth and activity parameters in the oligo-mesotrophic Piburger See, Austria. Enhanced grazing resulted in decreased proportions of bacteria with high nucleic acid content (high-NA bacteria) and lower detection rates by FISH. There was a change in the composition of the bacterial assemblage, whereby Betaproteobacteria were heavily grazed while Alphaproteobacteria and Cytophaga-Flavobacterium-Bacteroides were less affected by predators. Changes in bacterial assemblage composition were also apparent in the treatments enriched with phosphorus, and even more pronounced in the incubations in dialysis tubes (allowing relatively free nutrient exchange). Here, Betaproteobacteria became dominant and appeared to act as successful opportunistic competitors for nutrients. In contrast, Actinobacteria did not respond to surplus phosphorus by population growth, and, moreover, maintained their small size, which resulted in a very low biomass contribution. In addition, significant relationships between high-NA bacteria and several bacterial phylogenetic clades were found, indicating an enhanced activity status. By combining several single-cell methods, new insight is gained into the competitive abilities of freshwater bacteria from a variety of phylogenetic lineages under contrasting sets of bottom-up and top-down constraints.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Eucariotos/fisiologia , Cadeia Alimentar , Fósforo/metabolismo , Filogenia , Animais , Bactérias/química , Bactérias/genética , Citometria de Fluxo , Água Doce/microbiologia , Água Doce/parasitologia , Hibridização in Situ Fluorescente , Ácidos Nucleicos/análise , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...